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E n g e l h a r d ’ s  ( 2 0 2 2 )  “ P i l l a r s  o f 
Measurement Wisdom” provides an effective 
bridge between statistics and measurement, 
conveyed in a language that is understandable 
to both scholars and practitioners. Recent 
advances in computation and unprecedented 
access to data have raised some questions 
pertaining to the validity of our deductions 
and underlying ethical issues. It might be 
important to streamline Engelhard’s pillars as 
well as to ensure that advanced technologies in 
statistics are appropriately utilized for solving 
measurement problems. Data information is 
a key concept that could create a new trend 
of integrated pillars for both statistics and 
measurement. Differential item functioning 
(DIF), as widely discussed in education and 
social science, is a good example to illustrate 
this idea. Two methods that have been applied 
to assess DIF in dichotomously scored items 
are logistic regression (Rogers & Swaminathan, 
1993) and the Mantel-Haenszel (MH) procedure 
(Holland & Thayer, 1986). By assessing data 
information, it is shown below that different 
pillars of statistics/measurement can be 

monitored at the same time. The residuals 
of fitting a DIF model are actually higher-
order interactions among variables and can be 
interpreted scientifically. 

DIF is a criterion for evaluating the 
fairness of measurement; that is, test items 
should measure the same ability across takers 
independent of factors irrelevant to the test 
supposed to measure. Let X be a binary item 
response with X = 0 or 1 for incorrect and 
correct answers, respectively, on a test. Let Y 
be the matching variable which can be a taker’s 
ability level estimated by an item response 
theory model or his/her total raw score, and 
Z be a grouping variable such as ethnicity or 
gender. The cross-classified (X, Y, Z) table is a 
three-way 2 × J × K contingency table with the 
joint probability density function , for i = 1 
or 2, j = 1, …, J and k = 1, …, K. The mutual 
information (MI) or relative entropy among 
categorical variables (Kullback & Leibler, 1951) 
defines the expectation of the logarithmic ratio 
between the joint likelihood and the product of 
marginal likelihoods under the independence 
condition. Denote (X, Y, Z) as the sample 
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estimate of MI of the three variables, which can 
be decomposed into the following terms (Cheng, 
Liou, & Aston, 2010; Cheng, Liou, Aston, & 
Tsai, 2008):

(X; Y; Z) = (Y; Z) + (X; Y) + (X; Z|Y),           
(1)

where the right-hand side of Equation 1 gives 
two 2-way MI terms; for example, (X; Y) is 
the MI of the 2-way (X, Y) table, which is an 
analogy of (X; Y; Z) in the 3-way table. The 
conditional MI (CMI) term (X; Z|Y) is the 
expected deviance of population data from 
the table assuming conditional independence 
between X and Z across the levels of Y. 
Likelihood ratio (LR) statistics corresponding to 
the three terms are orthogonal to each other and 
can be tested for statistical significance using 
Chi-Square distributions with, respectively, 
(J-1)(K-1), (I-1)(J-1), and (I-1)(K-1)J degrees of 
freedom. The information identity in Equation 
1 also indicates that the 3rd 2-way (X, Z) does 
not exist when (Y, Z) and (X, Y) are already 
in the model. If (X; Z|Y) is replaced by (X; 
Z) in Equation 1, this additional 2-way effect
measures the partial association between X and
Z given Y. The CMI term in Equation 1 can be
further decomposed into two orthogonal terms;
that is,

(X; Z|Y) = (X; Y; Z) + (X; Z|Y),    
(2)

where (X; Y; Z) denotes the interaction 
between the three variables, and (X; Z|Y) 
denotes the partial association between X and Z 
given Y. 

The two orthogonal LR statistics for testing 
significance in Equation 2 are analogy of the 
Breslow–Day (Breslow et al., 1980) and MH 
tests (Mantel & Haenszel, 1959), respectively, 
which are not orthogonal to each other, 
however. We may consider terms in Equation 
2 as the MI counterparts of the Breslow-
Day and MH tests. All MI and CMI terms in 
Equations 1 and 2 can be estimated by the 
maximum likelihood estimation method under 

independence and conditional independence 
assumptions. The right-hand side of Equation 1 
can further be expressed as

(X; Y; Z) = (Y; Z) + [X; (Y, Z)]

= (Y; Z) + (X; Y) + (X; Z|Y). (3)

The term [X; (Y, Z)] in Equation 3 corresponds 
to the total information to be fitted by a logistic 
regression model, in which X is the target 
variable to be predicted by Y and Z. 

Rogers and Swaminathan (1993) proposed 
the logistic regression analysis for detecting 
uniform and nonuniform DIF in dichotomous 
items. The binary logistic model in DIF analysis 
considers the logarithmic odds between the 
probability of receiving score 1 relative to that 
of score 0 on the target item as follows:

β β β β , (4)

for j = 1, …, J and k = 1, …, K. The variable 
Y denotes the total score after deleting the 
score on the target item, and Z is the grouping 
variable (focal versus reference groups). An 
item displays uniform DIF if β  is significant 

and β  is insignificant. If β  is significant, 

then the item is declared to have nonuniform 
DIF. When Y is categorical, the model in 
Equation 4 is identical to [X; (Y, Z)] = (X; 
Y) + (X; Z|Y). As indicated in Equation 2, 
(X; Z|Y) can be decomposed into the partial 
association and interaction terms corresponding 
to uniform (β ) and nonuniform (β ) DIF, 
respectively. An empirical example may 
illustrate the correspondence between models in 
Equations 3 and 4. 

Empirical data contain item responses 
on the Basic Competence Test for Junior 
High School Students (BCtest) developed for 
measuring the ability of resolving practical 
problems using 9th grade algebra and geometry 
knowledge by the Research Center  for 
Psychological and Educational Testing in 
2009. For the illustrative purpose, we selected 
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11 geometry items that were homogeneous 
in content based on factor analysis on item 
scores, and a random sample of 29,710 takers 
after deleting cases with missing responses. We 
considered genders as the grouping variable 
and total raw scores as the matching variable 
(without counting scores on the item under the 
DIF analysis). An interested reader may refer 
to Smith (2004) for a comparison between the 
MH procedure and Rasch model for assessing 
DIF. Among the 11 items, LR tests based on 
information decomposition in Equation 2 
suggested that 6 out of 11 items were classified 
as non-DIF items at α = 0.05, and the other 
5 items were classified as nonuniform DIF. 
Logistic regression in Equation 4 treating Y 
as a continuous variable suggested similar 
results except for one out of these 6 non-DIF 
items that showed significant β . Additionally, 
one nonuniform DIF item in the LR test was 
classified as uniform DIF with significant 
β  in logistic regression analysis. The cross-
classifying (X, Z) according to the levels of 
Y suggested that the item with significant 
β  in logistic regression showed significant 
contingency coefficients with p values equal to 
0.02 and 0.01 for Y = 2 and 3, respectively, (i.e., 
genders and item scores were correlated when Y 
= 2 and 3) which could explain the insignificant  

(X; Y; Z) and (X; Z|Y) in the LR test. In 
the BCtest, which has been used as an entrance 
examination for senior high school, bias in low-
level scores is not necessarily of concern in 
selecting cut-off scores at the upper-tail of the 
score distribution.

The BCtest  test  data also include 5 
geographic locations (i.e., rural and urban areas) 
of takers in Taiwan, and the grouping variables 
can be genders and areas (A):

(X; Y; Z; A) = (Y; Z; A) + [X; (Y, Z, A)]

= (Y; A) + (Z; A) + (Y; Z|A)

 + (X; Y) + (X; Z|Y) + [X; A|(Y, Z)]. 

(5)

Equation 5 satisfies the rule of a valid 
information identity; that is, with 4 variables, 
there are at most three 2-way, two 3-way, and 
one 4-way MI terms (Liou et al., 2023). If 
one computes the MI values for the 6 terms in 
Equation 5 separately, the sum of these values 
should be equal to the (X; Y; Z; A) value. 
The last two terms in Equation 5 can each be 
decomposed into partial and interaction effects. 
The logistic regression can be expressed as 

β β β β β . 

(6)

When β , β , and β  are already in the model, 

the last term β  for l = 1, …, 5 estimates  
[X; A| (Y, Z)]. The deviance value after fitting 
Model 6 to data estimates [X; A; (Y, Z)]. 
Among the 6 non-DIF items, three of them 
showed significant partial associations with 
geographic areas. Logistic regression treating Y 
as a continuous variable also suggested similar 
results.

Our DIF analysis has made it clear that 
when assessing DIF in complex scenarios, 
the MI approach advocates the integration 
of various methods (e.g., MH and logistic 
regression) under a single data-information 
framework. In this example, the data per se 
supervise various pillars of measurement, 
including likelihood, measurement invariance, 
and regression. In Equations 3 and 5, residuals 
are presented as high-order interactions among 
variables, which can be interpreted scientifically 
regardless of their statistical significance.

Finally, it is important to remember that 
educational measurement involves ranking 
takers according to two dimensions: (1) relative 
competence on items designed according 
to psychometric properties (i.e., individual 
differences) or (2) differential competence 
before and after an intervention designed 
according to specific edumetric properties (i.e., 
individual gain; Carver, 1974). The pillars 
of statistical analysis, including aggregation, 
likelihood, information, inter-comparisons, 
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regression, design, and residuals, rely largely 
on the principle of variation within a sample. 
In the absence of variation, all such statistical 
analysis grinds to a halt. In other words, these 
pillars reflect the value and applicability of 
the psychometric dimension to measurement-
related issues including the MI approach. 
Ideally, an educational program should seek 
to maximize the gains achieved between pre- 
and post-assessments, rather than maximizing 
between-person variation. In situations where 
assessment focuses on the gains made by the 
individual before and after an intervention, it is 
important to divorce research and practice from 
the principle of variation among test takers. In 
other words, researchers must develop advanced 
theories and technologies that are independent 
of this principle by tailoring measurement to 
edumetric properties. 
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